
Generalized Hebbian Algorithm for Incremental Latent Semantic Analysis

Genevieve Gorrell* and Brandyn Webb

*Department of Information and Computer Science
Linköping University, LINKÖPING 583 81, Sweden

gengo@ida.liu.se

brandyn@sifter.org

Abstract
The Generalized Hebbian Algorithm is shown to be equivalent
to Latent Semantic Analysis, and applicable to a range of LSA-
style tasks. GHA is a learning algorithm which converges on
an approximation of the eigen decomposition of an unseen fre-
quency matrix given observations presented in sequence. Use
of GHA allows very large datasets to be processed.

1. Introduction
Latent Semantic Analysis (LSA) is an established method for
automatically inferring the contextual similarity of words from
a large corpus of text, and has been shown qualitatively (and
in some cases quantitatively) to mimic human performance in
many of its properties and applications [1]. It has been used
to great effect in information retrieval, where its ability to find
synonyms is particularly relevant. More recent applications in-
volve incorporation of LSA semantic information into language
models [2]. LSA is typically formulated in terms of large ma-
trix operations on the corpus as a whole, and is thus principally
a batch algorithm. However, a number of methods do exist for
folding in new data after the initial batch process is complete,
with varying tradeoffs between exactness and compute time [3].
In this paper, we demonstrate that LSA can be performed in a
purely incremental manner from the ground up and with mini-
mal memory requirements via the Generalized Hebbian Algo-
rithm (GHA) [4], making LSA amenable to continuous, on-line
learning of non-finite data sets via a fairly simple (and some-
what biologically plausible) algorithm.

2. Latent Semantic Analysis
The principle data matrix representing the input corpus in
LSA consists of columns representing documents (or passages,
which we will collectively refer to as documents throughout this
paper), and rows representing words, with any given cell repre-
senting the frequency of a particular word in a particular docu-
ment. This data matrix is typically highly sparse, and it is this
sparseness which defines the difficulty in making useful com-
parisons from the raw data: Two documents which may be con-
ceptually nearly synonymous may, by chance, have very little
overlap in their exact vocabulary, which is to say, the dot prod-
uct of their respective column vectors in the matrix may be quite
small. LSA, roughly, can be seen as a data smoothing algorithm
for un-sparsifying this matrix in a meaningful way, such that
contextually similar elements (either words or documents) have
strong overlap while contextually dissimilar elements do not.

LSA accomplishes this via the singular value decomposi-
tion (SVD) of the original word by document data matrix, A,
as:

A = UΣV T

Where U and V are orthogonal matrices of left and right
singular vectors (columns) respectively, and Σ is a diagonal
matrix of the corresponding singular values. The U and V
matrices can seen as a matched set of orthogonal basis vectors
into their corresponding spaces (words and documents, respec-
tively), while the singular values specify the effective magni-
tude of each such basis-vector pair. By convention, these ma-
trices are sorted such that the diagonal of Σ is monotonically
decreasing, and it is a property of SVD that preserving only
the first (largest) N of these (and hence also only the first N
columns of U and V) provides a least-squared error, rank-N ap-
proximation to the original matrix A.

This least-squared-error reduction in rank of the original
matrix is how LSA smoothes the data, from an initial rank that
may be as high as the number of documents (easily tens of
thousands) to a more manageable rank, typically empirically
selected in the range of 100 to 300. By forcing the reconstruc-
tion of the entire data matrix through the bottle neck of a small
number of representative vectors (U and V), it is hoped that
these vectors represent ”meaningful” generalizations of the data
as a whole, and ergo that the reconstructed matrix captures the
contextual essence of the elements while dismissing the finer
distinctions (including mere sampling noise).

3. An Incremental Approach–The
Generalized Hebbian Algorithm

Singular Value Decomposition is intimately related to eigen-
value decomposition in that the singular vectors, U and V , of
the data matrix, A, are simply the eigen vectors of A ∗ AT

and AT ∗ A, respectively, and the singular values, Σ, are the
square-roots (with possible sign correction) of the correspond-
ing eigenvalues. Further, by definition V = AT ∗ U ∗ Σ−1, so
it suffices, for instance, to find just the eigenvectors and eigen-
values of A ∗ AT , from which the rest is readily inferred.

Note that A ∗ AT =
∑

j(Aj ∗ AT
j), where Aj is the j’th

column vector in A (i.e., in our case the vector of (log) word
counts for the j’th document). Thus A ∗ AT is essentially a
co-occurrence matrix of modified word counts, and U is the set
of eigenvectors of this matrix.

Oja and Karhunen [5] demonstrated an incremental solu-
tion to finding the first eigenvector from data arriving in this
form, and Sanger [4] later generalized this to finding the first N
eigenvectors with the Generalized Hebbian Algorithm (GHA).
The essence of those algorithms is a simple Hebbian learning
rule as follows:

Un(t + 1) = Un + Λ ∗ (UT
n ∗ Aj) ∗ Aj

Where Un is the n’th column of U (i.e., the n’th word-
space singular vector). The only modification to this is that
each Un needs to shadow any lower-ranked Um(m > n) by re-
moving its projection from the input Aj in order to assure both
orthogonality and an ordered ranking of the resulting eigenvec-
tors. Sanger’s final formulation [4] is:

cij(t+1) = cij(t)+ γ(t)(yi(t)xj(t)− yi(t)
∑

k≤i

ckj(t)yk(t))

Where cij is an individual element in the word-space singu-
lar vector, t is the time step, xj is the input vector and yi is the
activation (that is to say, the dot product of the input vector with
the ith feature vector). To summarise, the formula updates the
current feature vector by adding to it the input vector multiplied
by the activation minus the projection of the input vector on all
the feature vectors so far including the current feature vector,
multiplied by the activation. Including the current feature vec-
tor in the projection subtraction step has the effect of keeping
the feature vectors normalised. Note that Sanger includes an ex-
plicit learning rate, γ. In this work, we vary the formula slightly
by not including the current feature vector in the projection sub-
traction step. In the absence of the autonormalisation influence,
the feature vector is allowed to grow long. This has the effect
of introducing an implicit learning rate, since the vector only
begins to grow long when it settles in the right direction, and
since further learning has less impact once the vector has be-
come long. For this reason, no explicit learning rate is included
in our implementation. Weng et al. [6] demonstrate the efficacy
of this approach.

In terms of an actual algorithm, this amounts to storing a set
of N word-space feature vectors (which develop over time into
the left-side singular vectors of LSA) and updating them with
the above delta computed from each incoming document as it is
presented. I.e., the full data matrix itself (A) need never be held
in memory all at once, and in fact the only persistent storage
requirement is the N developing singular vectors themselves.

LSA often includes an entropy-normalisation step [3], in
which word frequencies of the original data matrix are modified
to reflect their usefulness as distinguishing features. The word
count is modified by setting the cell value as follows1:

cij = 1 +
∑

j

pijlog(pij)

log(n)

Where pij =
tfij

gfi
and n is the number of documents in the

collection. tf is the term frequency, ie. the original cell count,
and gf is the global frequency, ie. the total count for that word
across all documents.

By modifying the word count in this way, words that are of
little value in distinguishing between documents, for example,
words such as “the”, that are very frequent, are down-weighted.
Observe that the calculation of the entropy depends on the total
document count and on the total number of a given word across
all the documents, as well as the individual cell count. For an
incremental method, this means that it must be calculated over
the documents seen so far, and that word and document counts
must be accumulated on an ongoing basis. A little algebra pro-
duces:

1A known error in [3] has been corrected here.

cij = 1 +

∑
j tfij log(tfij) − gfilog(gfi)

gfilog(n)

This arrangement has the convenient property of isolat-
ing the summation over a quantity that can be accumulated, ie
tfij log(tfij), whereas the previous arrangement would have
required the term frequencies to be stored for an accurate calcu-
lation to be made.

This figure however becomes less useful over very large
numbers of training items, such as one might use with an in-
cremental algorithm. Consider that it is the nature of language
that most words are extremely infrequent. As the number of
seen items tends to infinity, the weighting of words that occur
with midrange frequencies will tend to zero, and words that oc-
cur virtually never will come to dominate. This is not useful
in a method based on words co-occurring in similar documents.
In fact, it is not the very infrequent words that are important but
the mid-frequency words that are good differentiators. For this
reason, the concept of an “epoch size” has been introduced as
follows:

cij =
(1

gfi

∑
j tfijlog(tfij)) − log(gfi) + log(n) − log(Nepoch)

log(Nepoch)

This is equivalent to setting the lower bound on frequency
to one occurrence per epoch, and serves the purpose of fixing
the weighting values for certain word frequencies even as the
number of data items continues to increase.

4. Results
The 20 Newsgroups dataset [7] was used to demonstrate the
equivalence of GHA to standard LSA. A test corpus was pre-
pared using data from two newsgroup subsections (atheism and
hockey). GHA was then used to decompose the dataset. The
data were presented one document at a time, in the form of
sparse vectors containing raw word counts. The same dataset
was also presented to Matlab, in order to obtain a set of refer-
ence vectors. The dataset selected is quite small, in order that it
would be feasible to calculate the eigen decomposition using a
batch method such as Matlab uses. It should be noted however
that one of the main advantages to the GHA algorithm is that
extremely large datasets can be processed, and that since GHA
is a learning algorithm, it converges gradually on the right an-
swer rather than having at each point a perfect decomposition
of the data it has seen so far. For this reason, the data, for the
purposes of comparison with Matlab, was passed by the algo-
rithm many times to converge on the eigen decomposition of a
small dataset.

The dataset was passed to Matlab in the form of a 1998
(documents) by 29568 (unique words) matrix. Passing this data
to GHA in the form of document vectors 29568 long is equiv-
alent to eigen decomposing the square of the dataset matrix,
29568 by 29568. In order to obtain Matlab’s decomposition of
the data matrix, squaring and eigen decomposing it would be
a valid approach. We chose however to take the singular value
decomposition of the matrix, and discard the right (document
space) vector set. To obtain a singular value set from an eigen-
value set, the singular values must be squared. In the case of this
algorithm, where the values are calculated on a per-item basis,
the values also needed to be divided by the number of training
items in an epoch, in this case, 1998.

Figure 1: Convergence criterion and eigenvalue against number of data items.

A comparison of the results for the first ten eigenvalues is
shown in table 1. “Error” is defined to be one minus the dot
product of the eigenvector with the Matlab eigenvector. “LSA
Value” is the eigenvalue as calculated using Matlab. Figure 1
shows the algorithm’s convergence on the correct vector direc-
tions. The x-axis shows the number of data items presented. On
the left, the y-axis shows the error in vector direction and on
the right, the eigenvalue. Observe that as the convergence cri-
terion (the amount by which the direction of the vector changes
over, in this case, 500 data presentations) settles to zero, the
eigenvalue approaches and settles on its final value. After one
million data items have been presented, four vectors have con-
verged and a fifth is close to converging.

Table 1: Comparison of GHA and LSA.

Number Error GHA Value LSA Value

0 1.2874603E-5 1.957 1.972
1 3.6120415E-5 1.333 1.339
2 1.2278557E-5 0.734 0.757
3 1.9288063E-4 0.568 0.575
4 1.9168854E-4 0.397 0.445
5 8.904934E-5 0.315 0.381
6 2.5987625E-5 0.403 0.316
7 3.234148E-4 0.279 0.284
8 2.4974346E-4 0.248 0.267
9 1.5366077E-4 0.254 0.245

The vector set produced by GHA differs from standard LSA
in that, being an eigen decomposition, no document-space vec-
tor set is produced. One way to describe how standard LSA
works at this point would be to say that the singular value de-
composition is reduced in dimensionality by discarding lower
value vector pairs and then used to recreate the original (now
smoothed) data matrix, such that a query vector in word space
can then be multiplied by the matrix to produce a vector in doc-
ument space. This vector effectively comprises the overlap (in
the form of the dot product) of the query with each of the doc-
uments. This approach is not appropriate to the incremental
algorithm, where the intention is that the number of documents
that the algorithm has seen would be very large. To perform
LSA-style tasks with the incremental algorithm a document set

appropriate to the task is selected and used to form a document
space. For example, the eigenvector set might be formed over
a large corpus of domain-general passages, but then used to run
queries on domain-specific datasets chosen at runtime.

The method can be outlined as follows. The document set is
formed into a document by word frequency matrix. The eigen-
vector set is multiplied by this matrix to “complete” the singular
vector set, that is to say, produce a singular vector set in docu-
ment space. This completed singular value decomposition can
then be used to reassemble the document by word frequency
matrix, such as it would be described using the given number
of singular vectors. This matrix can be used to compare the
new representations of the documents to each other. Queries are
also passed through the matrix to produce “pseudodocuments”,
which are then compared to the other documents using the dot
product.

This method has been performed here using a subset of the
training documents and the set of 100 eigenvectors produced
by Matlab for the sake of illustration. It should be noted that
the document set should be preprocessed using the most recent
weighting data from the algorithm, in the case that the weight-
ing steps are being used. Ten documents were chosen, five
from atheism and five from hockey. Table 2 constitutes a many-
to-many comparison of these documents, via the dot product.
Atheism items are denoted with a preceding “a” in the docu-
ment name, and hockey documents with a preceding “h”. The
reader should find themself able to locate the given documents
in the corpus using the name, should they wish to do so. Table 3
gives the comparison matrix produced using unprocessed doc-
uments, that is to say, vectors of raw word counts, in order to
illustrate the impact of LSA.

Observe that in general, the numbers in the top left and bot-
tom right sections of the matrix are larger than those in other
sections. This shows a predictable tendency for atheism docu-
ments to be more like other atheism documents and for hockey
documents to be more like other hockey documents. Observe
also that the clustering effect is less strong in table 3: LSA has
increased the similarity between documents within domains.
Treating the first document, “a:53366”, as a query, we can use
the matrix of dot products to find the document most similar to
it. The raw word counts select “h:54776” as the most similar
document. This is a document from the hockey section, and as

Table 2: Many-to-many document comparison with LSA.

a:53366 a:53367 a:51247 a:51248 a:51249 h:54776 h:54777 h:54778 h:54779 h:54780
a:53366 1.00 0.86 0.86 0.83 0.91 0.78 0.22 0.63 0.52 0.70
a:53367 0.86 1.00 0.82 0.77 0.76 0.63 0.15 0.44 0.38 0.55
a:51247 0.86 0.82 1.00 0.74 0.80 0.66 0.18 0.44 0.40 0.58
a:51248 0.83 0.77 0.74 1.00 0.80 0.78 0.23 0.68 0.61 0.77
a:51249 0.91 0.76 0.79 0.80 1.00 0.78 0.23 0.64 0.57 0.73
h:54776 0.78 0.63 0.66 0.78 0.78 1.00 0.42 0.88 0.84 0.92
h:54777 0.22 0.15 0.18 0.23 0.23 0.42 1.00 0.45 0.39 0.40
h:54778 0.63 0.44 0.44 0.68 0.64 0.88 0.45 1.00 0.85 0.88
h:54779 0.52 0.38 0.40 0.61 0.57 0.84 0.39 0.85 1.00 0.90
h:54780 0.70 0.55 0.58 0.77 0.73 0.92 0.40 0.88 0.90 1.00

Table 3: Many-to-many document comparison without LSA.

a:53366 a:53367 a:51247 a:51248 a:51249 h:54776 h:54777 h:54778 h:54779 h:54780
a:53366 1.00 0.52 0.54 0.33 0.53 0.57 0.18 0.44 0.46 0.54
a:53367 0.52 1.00 0.54 0.40 0.47 0.51 0.20 0.38 0.40 0.45
a:51247 0.54 0.54 1.00 0.35 0.57 0.60 0.22 0.51 0.46 0.61
a:51248 0.33 0.40 0.35 1.00 0.35 0.42 0.19 0.27 0.29 0.29
a:51249 0.53 0.47 0.57 0.35 1.00 0.61 0.18 0.50 0.47 0.57
h:54776 0.57 0.51 0.60 0.42 0.61 1.00 0.24 0.62 0.57 0.63
h:54777 0.18 0.20 0.22 0.19 0.18 0.24 1.00 0.20 0.18 0.20
h:54778 0.44 0.38 0.51 0.27 0.50 0.62 0.20 1.00 0.55 0.57
h:54779 0.46 0.40 0.46 0.29 0.47 0.57 0.18 0.55 1.00 0.71
h:54780 0.54 0.45 0.61 0.29 0.57 0.63 0.20 0.57 0.71 1.00

the dot product of 0.57 suggests, the document is not in fact es-
pecially similar to “a:53366”. Using LSA, however, several of
the documents are raised in their similarity rating, most notably
the atheism documents. The document now selected as being
the most similar to “a:53366”, with a dot product of 0.91, is not
only an atheism document, but also discusses law, as does the
query document.

5. Conclusion

We have demonstrated the use of the Generalized Hebbian Al-
gorithm to perform Latent Semantic Analysis. LSA is an es-
tablished method for using a corpus of textual passages to in-
fer contextual similarity. It has been applied to a wide range
of speech and language-related tasks, including information re-
trieval and language modelling. The method is based on Sin-
gular Value Decomposition, a close relative of eigen decompo-
sition. GHA is an incremental method for deriving the eigen
decomposition of an unseen matrix based on serially presented
observations. Since it does not require that the entire matrix
be held in memory simultaneously, extremely large corpora
can be used. Data can be added continuously, making the ap-
proach amenable to situations where open-ended corpora are to
be used.

6. Acknowledgements

The authors would like to acknowledge Vinnova and the
Graduate School of Language Technology, who funded this
work.

7. References
[1] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W.

Furnas, and R. A. Harshman, “Indexing by latent semantic
analysis,” Journal of the American Society of Information
Science, vol. 41, no. 6, pp. 391–407, 1990. [Online].
Available: citeseer.nj.nec.com/deerwester90indexing.html

[2] J. Bellegarda, “Exploiting latent semantic information in
statistical language modeling,” Proceedings of the IEEE,
vol. 88:8, 2000.

[3] S. Dumais, “Enhancing performance in latent se-
mantic indexing,” 1990. [Online]. Available: cite-
seer.ist.psu.edu/dumais92enhancing.html

[4] T. D. Sanger, “Optimal unsupervised learning in a single-
layer linear feedforward neural network,” Neural Networks,
vol. 2, pp. 459–473, 1989.

[5] E. Oja and J. Karhunen, “On stochastic approximation of
the eigenvectors and eigenvalues of the expectation of a ran-
dom matrix,” J. Math. Analysis and Application, vol. 106,
pp. 69–84, 1985.

[6] Y. Z. Juyang Weng and W.-S. Hwang, “Candid covariance-
free incremental principal component analysis,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 25:8, pp. 1034–1040, 2003.

[7] CMU World Wide Knowledge Base (Web–KB) project,
http://www-2.cs.cmu.edu/ webkb/, as of 6 April 2005.

